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Traditional speckle fringe patterns of electronic speckle pattern interferometry (ESPI) are obtained by
adding, subtracting, or multiplying the speckle patterns recorded before and after the deformation. How-
ever, these speckle fringe patterns are of limited visibility, especially for addition and multiplication fringe
patterns. We propose a novel method to obtain speckle fringe patterns of ESPI from undeformed and
deformed speckle patterns. The fringe pattern generated by our method is of high contrast and has better
quality than subtraction fringe. The new method is simple and does not require more computational effort.
The proposed method is tested on the experimentally obtained undeformed and deformed speckle patterns.
The experimental results illustrate the performance of this approach.
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Electronic speckle pattern interferometry (ESPI) is a
well-known non-destructive whole-field technique for
measuring displacements and is widely applied in var-
ious fields[1]. Accurate extraction of phase value is of
fundamental importance for the successful application
of ESPI[2,3]. The phase-shifting technique is one of
the most commonly used methods. However, com-
monly used phase shifting methods require at least
three speckle fringe patterns with certain phase differ-
ences. Even the single-phase-step methods also require
undeformed, deformed, and introduced π/2 phase-shift
speckle patterns[4]. In the measurement of objects in fast
motion or in a temporally unstable environment, it is dif-
ficult to take several phase-shifted interferograms in an
extremely short period[5]. Therefore, the need for pro-
cessing a single fringe pattern arises. There are many
techniques to estimate the phase term from a single
fringe pattern, such as the Fourier transform method[6],
the phase-locked loop method[7], and regularized phase
tracker[8]. No matter which type of technique is used
for extraction of phase from a single fringe pattern, it
is very important that ESPI fringe patterns are of good
visibility[9]. Traditional ESPI fringe patterns obtained by
two undeformed and deformed speckle patterns are of
limited visibility, so special techniques are needed to re-
move the noise and enhance the contrast of ESPI fringe
patterns[10]. In addition, the direct correlation method
can generate the fringe patterns by performing a direct
correlation between two original speckle patterns[11]. The
main disadvantage of the method is that the calculations
to carry out the correlation require more computational
effort than that needed for the frame subtraction method.

In this letter, we present a novel method to obtain the
fringe patterns of ESPI from the two original speckle pat-
terns. The ESPI fringe pattern obtained by our method
is of high contrast and has better quality even than sub-
traction fringe patterns. The new method is simple and

can solve the problem encountered by the direct correla-
tion. We test the proposed method on the experimentally
obtained speckle patterns. The results are encouraging
and demonstrate the performance of the new method.

ESPI depends on intensity maps recorded before and
after the surface of a specimen is deformed. Under un-
stressed conditions, the intensity I1(x, y) at any point
(x, y) is

I1 = Io + Ir + 2
√

IoIr cos (φr − φo), (1)

where Io and Ir are the intensities of the object and the
reference beams, respectively; φo and φr are the phases of
the undeformed object light beam and the reference light
beam, respectively; and (φo −φr) is the random interfer-
ometric phase of the speckle field. After deformation, the
intensity at any point (x, y) becomes

I2 = Io + Ir + 2
√

IoIr cos (φr − φo + δ), (2)

where δ is the phase change due to the deformation of
surface of the tested object. The variable dependence on
(x, y) is dropped for brevity, however, it is implied in all
variables.

We rearrange Eqs. (1) and (2) as

I1(x, y) = A(x, y) [1 + γ(x, y)cos φ(x, y)] , (3)

I2(x, y) = A(x, y)

{

1 + γ(x, y)cos

[

φ(x, y)

+δ(x, y)

]}

, (4)

where A(x, y) = Io + Ir, γ(x, y) = 2
√

IoIr
Io+Ir

, φ(x, y) =

φr − φo. A(x, y) is a slowly varying background illumi-
nation, γ(x, y) is related to the amplitude modulation.
Here we may assume that A and γ are constant over the

1671-7694/2009/090788-03 c© 2009 Chinese Optics Letters



September 10, 2009 / Vol. 7, No. 9 / CHINESE OPTICS LETTERS 789

region of interest. This requirement on A and γ is equiv-
alent to requiring that different pixels in the region of
interest are the same except for the effect of the phase
term δ(x, y). Under this condition, Eqs. (3) and (4) can
be expressed as

I1(x, y) = A [1 + γcos φ(x, y)] , (5)

I2(x, y) = A {1 + γcos [φ(x, y) + δ(x, y)]} , (6)

Further, Eqs. (5) and (6) are rearranged as

cos[φ(x, y)] = h(x, y), (7)

cos [φ(x, y) + δ(x, y)] = g(x, y), (8)

where h(x, y) = I1(x,y)−A

γ
, g(x, y) = I2(x,y)−A

γ
, which are

the normalized intensities.
Now, let us focus on solving the phase at every pixel by

using Eqs. (7) and (8). For solving the phase δ(x, y), it
is reasonable that we assume the phase δ(x, y) is a con-
stant over the small window of (3×3), and limit the phase
δ and term φ for this algorithm within 0−2π. These as-
sumptions are also used in the other phase-shift calibra-
tion algorithms (see Ref. [12]). Let the subscript denote
the coordinates of pixel, for example, δi,j denoting the
phase of pixel (i, j). The whole image size is m × n.

According to Eq. (7), we calculate the term φ at
pixel(i, j). φ ∈ [0, 2π], so we can obtain two φ values
at pixel (i, j) denoted by φ1

i,j , φ2
i,j , respectively:

φ1
i,j = arccos(hi,j), φ2

i,j = 2π − arccos(hi,j). (9)

Similarly, according to Eq. (8), we calculate the phase
δ at pixel (i, j). φ ∈ [0, 2π] and δ ∈ [0, 2π], so (φ + δ) ∈
[0, 4π], and we obtain four (φ + δ) values at pixel (i, j)
denoted by (φ+ δ)1i,j , (φ+ δ)2i,j , (φ+ δ)3i,j , and (φ+ δ)4i,j :

(φ + δ)1i,j = arccos(gi,j), (φ + δ)2i,j = 2π − arccos(gi,j),

(φ + δ)3i,j = 2π + arccos(gi,j),

(φ + δ)4i,j = 4π − arccos(gi,j). (10)

Then, we obtain eight possible phase values at pixel
(i, j) denoted by δk

i,j(k = 1, · · · , 8) :

δ1
i,j = (φ + δ)1i,j − φ1

i,j , δ2
i,j = (φ + δ)1i,j − φ2

i,j ,

δ3
i,j = (φ + δ)2i,j − φ1

i,j , δ4
i,j = (φ + δ)2i,j − φ2

i,j

δ5
i,j = (φ + δ)3i,j − φ1

i,j , δ6
i,j = (φ + δ)3i,j − φ2

i,j ,

δ7
i,j = (φ + δ)4i,j − φ1

i,j , δ8
i,j = (φ + δ)4i,j − φ2

i,j , (11)

where 1 ≤ i ≤ m, 1 ≤ j ≤ n. Thus, we obtain eight
possible phase values at every pixel in the whole image.
Consequently, we report in detail on how we find the
most reasonable phase from eight possible phase values
at every pixel.

Given the current pixel (i, j), it has eight neighbors
in a small window of (3×3) whose coordinates are given
by (i + l1, j + l2), −1 ≤ l1 ≤ 1, −1 ≤ l2 ≤ 1, both l1
and l2 are integers, and not equal to zero at the same
time. We will choose the optimal one of eight possible
δk
i,j (k = 1, · · · , 8) by its neighbors. The procedure of

choice is shown as follows.
Firstly, fixing δk

i,j (k = 1, · · · , 8) in turn. As mentioned

above, we have obtained two possible φ values at every
pixel. Now we choose a more reasonable φk

i+l1,j+l2
at

each neighboring pixel (i + l1, j + l2) of the current pixel
(i, j) from φ1

i+l1,j+l2
and φ2

i+l1,j+l2
.

According to the above-mentioned assumption, we
have

δk
i+l1,j+l2

≈ δk
i,j .

We calculate cos(φ1
i+l1,j+l2

+ δk
i+l1,j+l2

) and

cos(φ2
i+l1,j+l2

+ δk
i+l1,j+l2

) denoted by sk,1
i+l1,j+l2

,

sk,2
i+l1,j+l2

, respectively, and compare the calculated val-

ues with gi+l1,j+l2 obtained by Eq. (8). Corresponding
to δk

i,j , the chosen φk
i+l1,j+l2

at each neighboring pixel

(i + l1, j + l2) is

φk
i+l1,j+l2

=
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i+l1,j+l2

, if

(

∣

∣

∣
sk,1

i+l1,j+l2
− gi+l1,j+l2

∣

∣

∣

<
∣

∣

∣
sk,2

i+l1,j+l2
− gi+l1,j+l2

∣

∣

∣

)

φ2
i+l1,j+l2

, if

(

∣

∣

∣
sk,1
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∣

∣
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. (12)

The calculated value cos(φk
i+l1,j+l2

+δk
i+l1,j+l2

) is denoted

by sk
i+l1,j+l2

.

Secondly, we define Erk
i,j as the sum of the square of

the difference between sk
i+l1,j+l2

and gi+l1,j+l2 :

Erk
i,j =

1
∑

l1=−1

1
∑

l2=−1

(sk
i+l1,j+l2

− gi+l1,j+l2)
2. (13)

Eight values Erk
i,j (k = 1, · · · , 8) at the current pixel

(i, j) can be obtained. Then the minimum of Erk
i,j is

found, and the corresponding phase is regarded as the
most reasonable phase of the current pixel (i, j).

Under the assumption the undeformed and deformed
speckle patterns have been recorded, the steps to imple-
ment the proposed method for extracting the full phase
field of ESPI are summarized as follows.

Step 1: Calculating the normalized intensities hi,j and
gi,j at every pixel.

Step 2: Calculating the terms φ1
i,j , φ2

i,j at every pixel

based on Eq. (9); calculating (φ+δ)1i,j , (φ+δ)2i,j , (φ+δ)3i,j ,

and (φ + δ)4i,j at every pixel based on Eq. (10).

Step 3: Obtaining eight possible phase values δk
i,j (k =

1, · · · , 8) at pixel (i, j) by Eq. (11).
Step 4: Finding the most reasonable phase from eight

possible phase values δk
i,j (k = 1, · · · , 8) at every pixel.

For evaluating the real performance of the proposed
method, we test the method on the experimentally ob-
tained patterns, and compare the results with tradi-
tional subtraction fringe pattern. Figures 1(a) and (b)
give the experimentally obtained undeformed and de-
formed speckle pattern pair with image size of 523×
523 pixels, which depict the out-of-plane displace-ment
of a circular plate. The plate is rigidly clamped at its
boundary and is subject to a central load. Figure 1(c)
gives the fringe pattern obtained by our new method us-
ing the undeformed and deformed speckle pattern pair.
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Fig. 1. Experimentally obtained undeformed and deformed
speckle pattern pair and its fringe patterns. (a) Speckle pat-
tern before deformation; (b) speckle pattern after deforma-
tion; (c) the fringe pattern obtained by our method; (d) sub-
traction fringe pattern.

The subtraction fringe pattern obtained by Eqs. (1) and
(2) with the same speckle pattern pair is shown in Fig.
1(d). The computation time for Fig. 1(c) is 19.9 s.

As we can see, the contrast and visibility in the sub-
traction fringe pattern are low. From the undeformed
and deformed speckle patterns, it is apparent that the il-
lumination is not uniform, but the generated ESPI fringe
pattern by the new method is of high contrast and has
better visual inspection than the traditional subtraction
fringe pattern. One can find that the proposed method
gives the superior result.

In conclusion, we have presented and tested an alter-

native method to obtain fringe pattern from two speckle
patterns before and after deformation. The method is
novel and completely different from the other phase-shift
calibration algorithms. The ESPI fringe pattern gener-
ated by the new method is of good contrast and visibility.
In addition, the new method is simple, and its calculation
cost has been reduced as compared with the direct cor-
relation and the other phase-shift calibration algorithms.
The proposed method enlarges the techniques and appli-
cations of ESPI, especially for the harsh environmental
tests that fringe patterns have poor visibility. We have
demonstrated the performance of the new method via
applications in the experimental speckle patterns.

This work was supported by the National Natural Sci-
ence Foundation of China under Grant No. 60877001.
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